

Mercury inventories: trends, highlights and lessons-learned

Jakob Maag, UNITAR – Istanbul, Turkey – 26 Mar 2019

Results – patterns observed

Source types present

Source types present	Bangla- desh	Guinea- Bissau	Maurita- nia	Mozam- bique	Samoa
Energy-related (oil, gas, etc.)	X	X	X	X	X
ASGM			X	X	
Industrial mining			X		
Cement klinker production	X			X	
Products	X	X	X	X	X
Open waste burning and dumping	X	X	X	X	Χ

Results – differing

Results – mercury emissions

21Mar2019 results from MZ not yet re-reviewed

Mercury emissions to air, kg Hg/(capita*y) - MA industrial gold div. by 3

Results – mercury "releases"

Mercury releases to water+land, kg Hg/(capita*y) - MA industrial gold div. by 3

Results – developing country examples

What we saw on charts:

- Industrial non-ferrous metal production and ASGM dominate, when they are present
- Other major sources are typically mercury-added products, open waste burning and informal dumping
 - Mercury-added products often underestimated due to lack of data

Results – developing country examples

- Toolkit version differences: Waste input factors are under adjustment in the Toolkit
 - Implemented early in inventories for: SA,
 BD reflected in MIA's
 - Not implemented in inventories for: MAU, G-B, MZ

(but changed for MZ by JM 25MAR)

Lessons learned

Challenges encountered

- Lack of national data:
 - Consumption data for some products:
 - Thermometers, share of Hg-containing
 - Switches and relays
 - Polyurethane with Hg catalysts
 - Biocides/pesticides
 - Paints (preservatives)
 - Pharmaceuticals
 - Cosmetics (skin-lightening creams)
 - Blood pressure gauges + other manometers
 - Laboratory Hg uses
 - Religious uses
 - Resulting in <u>general underestimation of</u> <u>mercury inputs to society</u>

More challenges encountered

- Lack of national data:
 - Mercury concentrations in waste + wastewater
 - Resulting in general overestimation of emissions/releases from waste treatment
 - Emission sources' filters and management solutions
 - National specific input and output factors
 - For improving accuracy
 - Only a few countries contributed with original factor data

Challenges encountered

- Reasons for lack of national data:
 - Lack of trust from data owners
 - Data collection is time-consuming; resource-intensive
 - Face-to-face meetings, inspections, measurements
 - In-experienced data collectors
 - Not all inventory personnel received training

Lessons learned

Solutions:

- Use international data, if available
- Use approximations and assumptions, accept uncertainty
- Assistance to collection of additional data in future updates/build-outs
 - Combined with additional training
- National training sessions allow for inclusion of all key persons and stakeholders
- Sufficient funding
- National set-up: Include key data owners through small data search contracts

Key uncertainties

- Incomplete products inventories
- Input factors for major emission sources, vary extensively in real world
 - For gold producing countries: Industrial gold production, Hg concentration in ores
- Input factors for waste and waste water
 - Virtually un-investigated in developing countries so far

Conclusions

- ✓ Basic training performed
- ✓ First rough baseline established
- Key priorities for implementation of Minamata Convention identified
- Key priorities for further research identified
 - Improved products inventories
 - Measurements of concentrations in
 - Industrial gold ores
 - Municipal solid waste
 - Other non-ferrous metal concentrates
 - Measurements of mercury mass balances (fates) in same sectors/activities

THANK YOU FOR YOUR ATTENTION ATTENTION ATTENTION THOMATTENTION THOMATTENTION

Jakob Maag, cwm@unitary.org - www.unitar.org